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. ignorance of the roots of the subject has its price - no one denies that 
modern formulations are clear elegant and precise; it's just that it's 

impossible to comprehend how anyone ever thought of them. 

-M. Spivak 
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Introduction 

The quote from M. Spivak could well illustrate one of the reasons that, 

despite the increasing prominence of mathematics in today's world, most 

people just plain don't like it. Mathematicians must accept a large part 

of the responsibility for this state of affairs, and make efforts to 

increase general awareness of and appreciation for mathematics. This 

course is one attempt to shed light on some of the important "roots of the 

subject", and will thus be somewhat different from the usual mathematics 

course in that, while the details of the mathematics itself will certainly 

not be neglected, there will be two other important components of the 

course. First is an historical/biographical emphasis. Mathematics has 

been, and continues to be, a major cultural force in civilization, and 

mathematicians necessarily work within the context of their time and place 

in history. Since only a few episodes and personalities can be highlighted 

in a course like this, it should be kept in mind that major results in 

mathematics come about not as isolated flashes of brilliance, but after 

years (or even centuries) of intellectual struggle and development. Second 

is an attempt to provide some insight into the nature of mathematics and 
. . those who create it. Mathematics is a living, dynamic and vast discipline. 

The American Mathematical Society's 1979 subject classification contains 61 

basic classifications having approximately 3400 subcategories, and it has 

been estimated that the number of new theorems published yearly in 

mathematics journals is in excess of 100,000. It is hoped that this course 

will give the student some perspective on mathematics as a whole, and also 

provide some insight on how mathematics has developed over the years. The 

principal objective of the course, however, is that the student gain an 

understanding of the mathematics itself. In these notes, statements and 

proofs of theorems are often given in a form as close as possible to the 

original work. In practically all fields of scholarship, a valuable piece 

of advice is to read the classics, but this is not heard as much in 

mathematics as in some other areas. For one thing, the mathematics of 

previous generations is often difficult to read and not up to modern 

standards of rigor. Nevertheless, by reading primary sources, much 

valuable insight into a subject can be gained, and this is true for 

mathematics as well as other fields. The effort required is justified by 

the benefits. 



Deciding which theorems to include has been a major part of the preparation 

of this course, and the final list is bound to reflect personal taste. 

Among the guidelines used to make the choices were accessibility to 

students with a calculus background, variety in the branches of mathematics 

represented, inclusion of the "superstars" in mathematics, and the 

intellectual quality of the results. After some thought, it was decided 

that being able to cover the complete proof of a theorem was important but 

not necessary. Thus, a few topics, such as Godel's theorem, are included 

with considerable discussion, but whose proofs require more mathematics 

than can reasonably be expected from the students at this stage in their 

mathematical development. 

Finally, a few words to the students about what is expected of them with 

respect to the proofs of the theorems. Memorization of the proofs should 

not be a primary goal, although you may find that a certain amount of 

memorization occurs as a by-product as you work toward the main goal, which 

is understanding. An effective way to study mathematics is to read the 

material three times (at least); the first time read only the definitions 

and the statements of the theorems to get an idea of the mathematical 

setting; next re-read the material, this time scanning the proofs, but not 

checking all the details, in order to see what general techniques are used; 

finally, with pencil and paper ready at hand, read everything carefully, 

making sure you fully understand the logical path chosen by the 

mathematician to construct the proof. In many of the proofs in these notes 

details or steps have been omitted in some places. Whenever this occurs, 

the student & ex~ected to SUDD~V the missin& a. Often, but not - 
always, a statement such as "details are left to the student" helps 

identify gaps in the arguments. Understanding the great theorems of 

mathematics will certainly require effort, concentration, and discipline on 

the part of the student; after all, these theorems do represent pinnacles 

of mathematical thought. Those who persevere and gain an understanding of 

these theorems will, however, also gain a sense of personal satisfaction 

that comes from being able to comprehend some of the masterpieces of 

mathematics. 



The Pythagorean Theorem 

In right angled triangles, the s q u a r e  on the side subtending the 

right angle is equal to the squares on the sides containing the 

right angle. 

Prop. 1.47, Euclid's Elements 

The Pythagorean Theorem may well be the most famous theorem in mathematics, 

and is generally considered to be the first great theorem in mathematics. 

Pythagoras lived from about 572 B.C. until about 500 B.C., but "his" 

theorem appears to have been known to the Babylonians at least a thousand 

years earlier, and to the Hindus and Chinese of Pythagoras' time. However, 

no proofs are given in these ~arly.ref&ences, and it is generally accepted 

that Pythagoras or some member of his school was the first to give a proof 

of the theorem. The nature. of Pythagoras' proof is not known, and there 

has been much conjecture as to the method he used. Most authorities feel 

that a dissection proof such.as the following was most likely. ~. 

Denote the legs and hypotenuse of the given right triangle by a, b ,  

and c, and form two squares, each having side a+b, as in Figure 1. 

Dissect these squares as shown, noticing that each dissection includes 

four triangles congruent to the original triangle. The theorem 

followsby subtracting these four triangles from each square.  an^ 

important part of this proof i s  the assertion that the central figure 

in the second. dissectionis indeed a square: Can you prove this? 

What geometry is required? 

Figure 1 



In addition to its claims as the first and most famous of the great 

theorems of Mathematics, the Pythagorean Theorem is also probably the 

theorem with the most proofs. E. S .  Loomis has collected 370 proofs of 

this theorem in his book, The Pythagorean Proposition. Two more proofs 

will be given here, the first by James A. Garfield, done when he was a 

member of the House of Representatives in 1876 (five years before he became 

the 20th President of the United States), and the second by Euclid in his 

Elements, written about 300 B.C. 

James A. Garfield's H: Denote 'the legs and the hypotenuse of the -- 
right triangle by a, b, and c, and form the trapezoid shown in Fig. 2. 

Compute the area of the trapezoid in two ways, directly using the 

usual formula, and as the sum of the areas of the three right 

triangles into which the trapezoid can be dissected. Equating these 

and simplifying gives: 

Figure 2 



Euclid's m: The Pythagorean Theorem is proposition 47 in Book I 

of Euclid's Elements and the proof refers to some of the earlier 

propositions. These should be looked up by the interested reader. 

Details should also be filled in. 

Suppose AABC is a right triangle with LBAC = 9 0 .  Construct the 

squares BDEC on BC, AGFB on AB, and AHKC on AC (by 1.46). Through 

point A draw AL parallel to BD, and also draw lines FC and AD (by 1.31 

and Post. 1). See Figure 3. 

Now, LBAC = 9 0  and LBAG = 9 0 ,  so GAG is a straight line (by 

1.14). 

LDBC and LFBA are right angles, and thus are equal. Adding LABC 

to both yields LDBA = LFBC. Furthermore, AB = FB and BD = BC, and so 

triangles ABD and FBC are congruent (by 1.4). 

Now, triangle ABD and rectangle BDLM share the same base and lie 

within the same parallels, and so the area of the rectangle is twice 

the area of the triangle. The same reasoning applies to triangle FBC 

and rectangle (square) ABFG since it was shown above that GAG is a 

straight line. (1.41 is used here.) 

However, the congruence of triangles proved above leads us to the 

fact that the areas of BEE'S and ABFG are equal. 

The above reasoning should now be repeated to arrive at the fact 

that the areas of MLEC and ACKH are equal. (The student should draw 

appropriate auxiliary lines and fill in the details.) 

For notational convenience, the area of a figure will be 

indicated by the vertex-notation of the figure, i.e., area(ABC) = ABC. 

Thus, BDLM = ABFG and MLEC = ACKH. Adding these yields 

BDLM + MLEC = ABFG + ACKH 
which becomes 

BCED = ABFG + ACKH 
and the theorem is proved. 



Figure 3 

In some modern textbooks, many of the exercises following the proof of the 

Pythagorean Theorem require not the theorem itself, but the still unproved 

converse. To Euclid's credit, in the Elements the proposition immediately 

following the Pythagorean Theorem is its converse. Prove the following. 

If in a triangle, the square on one of the sides be equal to the 

squares on the remaining two sides of the triangle, the angle 

contained by the remaining two sides of the triangle is right. 

Hint: If in triangle ABC, LBAC is to be proved to be a right angle, 

construct a i to AC at A, extending to D, such that AD = AB. Then prove 

triangles ABC and ADC congruent. 



Anticipations of Calculus - Archimedes 

Let ABC be a segment of a parabola bounded by the straight line 

AC and the parabola ABC, and let D be the middle point of AC. 

Draw the straight line DEE parallel to the axis of the parabola 

4 
and join AB, BC. Then shall the segment ABC be - of the triangle 

3 

ABC. 

Proposition 1 from the Method of Archimedes, 

The greatest mathematician of antiquity was Archimedes of Syracuse, who 

lived in the third century B.C. His work on areas of certain curvilinear 

plane figures and on the areas and volumes of certain curved surfaces used 

methods that came close to modern integration. One of the characteristics 

of the ancient Greek mathematicians is that they published their theorems 

as finished masterpieces, with no hint of the method by which they were 

evolved. While this makes for beautiful mathematics, it precludes much 

insight into their methods of discovery. An exception to this state of 

affairs is Archimedes' Method, a work addressed to his friend Eratosthenes, 

which was known only by references to it until its rediscovery in 1906 in 

Constantinople by the German mathematical historian J. L. Heiberg. In the 

Method, Archimedes describes how he investigated certain theorems and 

became convinced of their truth, but he was careful to point out that these 

investigations did not constitute rigorous of the theorems. In his 

own (translated) words: "Now the fact here stated is not actually 

demonstrated by the argument used; but that argument has given a sort of 

indication that the conclusion is true. Seeing then that the theorem is 

not demonstrated, but at the same time suspecting that the conclusion is 

true, we shall have recourse to the geometrical demonstration which I 

myself discovered and have already published." This section will give both 

Archimedes' investigation, from the Method, and the rigorous proof, from 

his Quadrature of the Parabola, of the proposition above. The arguments 

given below are from T. L. Heath's The Works of Archimedes, which is a 

translation "edited in modern notation". 

Proposition 1 from the Method is stated at the beginning of this section, 

and the following investigation refers to Figure 1. 

From A draw AKF parallel to DE, and let the tangent to the parabola at 

C meet DBE in E and AKF in F. Produce CB to meet AF in K, and again 

produce CK to H, making KH equal to CK. 



~ ~ 

Figure 1 

consider CH as the bar of balance, K being its middle point. 

Let MO be any straight line parallel to ED, and let it meet CF, CK, AC 
. . in M, N, 0 and the cu~e1in P. ~ 

Now, since CE is a, tangent to the parabola and CD the semi-ordinate, 

EB = BD ; 

"for this is proved in the Elements (of Conics)." (by Aristaeus & 

Euclid) 

Since FA, NO, are parallel to ED, it follows that 

F K - K A ,  MM-NO. 

Now, by the property of the parabola, "proved in a lemma," 

MO : OP = CA : A0 (Cf. Quadrature of the Parabola, Prop. 5) 

= CK : KN (Euclid, VI. 2) 

H K  : KN. 

\ 
Take a st&ight line TG equal to OF, and place it with its centre of 

gravity at H, so that TH = HG; then, since N is the centre of gravity 



of the straight line MO, and MO : TG = HK : KN, it follows that TG 

at H and MO at N will be in equilibrium about K. (On the Equilibrium 

of Planes, I. 6, 7) 

Similarly, all other straight lines parallel to DE and meeting the arc 

of the parabola, (1) the portion intercepted between FC, AC with its 

middle point on KC and (2) a len&&equal to the intercept between the 

curve and AC placed with its centre of gravity at H will be in 

equilibrium about K. 

Therefore K is the centre of gravity of the whole system consisting 

(1) of all the straight lines as MO intercepted between FC, AC and 

placed as they actually are in the figure and (2) of all the straight 

lines placed at H equal to the straight lines as PO intercepted 

between the curve and AC. 

And, since the triangle CFA is made up of all the parallel lines like 

MO, and the segment CBA is made up of all straight lines like PO 

within the curve, it follows that the triangle, placed where it is in 

the figure, is in equilibrium about K with the segment CBA placed with 

its centre of -%-a.J< +.T at H. 

Divide KC at W so that CK = 3KW; then W is the centre of gravity of 

the triangle ACF; "for this is proved in the books on equilibrium" 

(Cf. On the Equilibrium of Planes, I. 5). Therefore 

AACF : (segment ABC) = HK : KW = 3 : 1. 
1 

Theref ore segment ABC = - AACF. 
3 ' ' r i  

But AACF = 4 AABc. ; f3P..! . ~ ~ ~ ~ i . . ; , ; ~ , ~ , s : . ~ w * ~  [I ?fi&;:<i  1 

4 
Therefore segment ABC = - AABC. 

3 

The statement by Archimedes that this is not a proof is found at this point 

in the Method. The mathematically rigorous proof, contained in 

Propositions 16 and 17 of Quadrature of the Parabola, will now be given. 

Be on the lookout for things like Riemann sums. 

Prop. 16. Suppose Qq to be the base of a parabolic segment, q being not 

more distant than Q from the vertex of the parabola. Draw through q the 

straight line qE parallel to the axis of the parabola to meet the tangent Q 

in E. It is required to prove that 
1 

(area of segment) = - AEqQ. 
3 



The proof will employ the method of exhaustion, a technique much used by 

Archimedes, and will take the form of a double reductio ad absurdurn, where 

the assumptions that the area of the segment is more than and less than 
3 

the area of the triangle both lead to contradictions. 

I. Suppose the area of the 
1 segment greater than - AEqQ. Then 
3 

the excess can, if continually 1 

added to itself, be made to exceed 

AEqQ. And it is possible to find F 

a submultiple of the triangle EqQ 
. . 

less than the said excess of the 
1 segment over - AEqQ. 

Let the triangle FqQ be such a 

.submultiple of the triangle EqQ. 

Divide Eq into equal parts each 
~. 

equal to qF, and let all points of 

division including F -be joined to E 
~. 

0. meeting the parabola. in . - 

R,R ,.. . . ,R respectively. Through R R ,. . . ,R draw diameters of the 
n I' 2 n 

parabola meeting qQ in 0 ,0 . . . ,0 respectively. 
1 2' n 

Let 0 R meet QR in F ,  let O R  meet QR in Dl and Q R  in F ,  let 
1 1  2 1 

03R meet Q R  in D and QR in F ,  and so on. 

W e  have, by hypothesis; ~ 

1 
- AF~Q < (area of segment) - - AE~Q; 

or, 
1 

: (area of segment) - AFqQ > - AEqQ 
3 (a) 

Now, since all the parts of qE, as qF and the rest, are equal, 

O1R = RIFl. 02D = R F and so on; therefore 
2 2' 

AFqQ = (FO + R O  + D O  + ...) 
1 1 2  1 3  

= (FO + F D  + F D  + ... + F D + AERQ) 
1 1 1  2 2 0-1 n-1 n n ( I 9  

But 

(area of segment) < (FO + F 0 + . . . + F 0 + AE 0 Q). 
1 1 2  n-1 n n n 

Subtracting, we have 

(area of segment) - AFqQ < ( R 0  + R 0 + . . . + R 0 + AR 0 Q) , 
2 3 n-1 n n n 

whence, a fortiori, by (a), 



1 - AEqQ < (R1O + R20 + . . . + R 0 + AR 0 Q) 
3 n-1 n n n 

But this is impossible, since [Props. 14,151 
1 - AEqQ < ( R 0  + R20 + . . . + R 0 + AR 0 Q). 
3 n-1 n n n 

Therefore 
1 

(area of segment) > AEqQ 

cannot be true. 

1 
11. If possible, suppose the area of the segment less than - AEqQ. 

3 

Take a submultiple of the triangle EqQ, as the triangle FqQ, less than 
1 the excess of -AEqQ over the area of the segment, and make the same 
3 

construction as before. 

1 Since AFqQ < - AEqQ - (area of segment), it follows that 
AFqQ + (area of segment) < - A E ~ Q  < (FO+ FO+. ..+ F 0 + AE 0Q) 

3 n - I n .  n n  

[Props: 14, 151 Subtracting from each side the area of the segment, 

we have . ~ 

AFqQ < (sum of spaces qFR, RlFlR2, . . . , E R Q) 
n n  ' 

< (FO+ F D  + ...+ F D + AERQ), a fortiori; 
1 1  n-1 n-1 n n 

which is impossible, because, by (8 above, 
. ~ 

AFqQ - FO+ F D +  ...+ F D + AE R Q. 
n-1 n-1- n n 

1 
Hence the area of the segment cannot be less than - AEqQ-. 

3 

1 Since the area of thesegment is neither less nor greater than - AEqQ, 
it is equal to it. : 

Proposition 17. It is now manifest that the area of any segment of a 

parabola is four-thirds of the triangle which has the same base as the 
A 

segment and equal height. 

Let Qq be the base of the segment, P its vertex. Then PQq is the 

inscribed triangle with the same 

base as the segment and equal 

height. 

Since P is the vertex of the 

segment, the diameter through P 

bisects Qq. Let V be the point of 

bisection. 

Let VP, and qE drawn parallel to 

14 



it, meet the tangent at Q in T, E respectively. 

Then, by parallels, qE = 2VT, and PV = PT, [Prop. 21 so that VT = 2PV. 

Hence AEqQ = 4APQq. But by Prop. 16, the area of the segment is equal 
1 

to - AEqQ. 
3 

4 
Therefore (area of segment) = - APQq. 

3 

In case readers were not sure what Archimedes meant by the terms base, 

height, and vertex in the above work, he defines them immediately after 

Prop. 17. "In segments bounded by a srtaight line and any curve, I call 

the straight line the base, and the height the greatest perpendicular drawn 

from the curve to the base of the segment, and the vertex the point from 

which the greatest perpendicular is drawn." 



The General Solution of the Cubic Equation 

Cube the third part of the number of "things", to which you add 

the square of half the number of the equation, and take the root 

of the whole, that is, the square root, which you will use, in 

the o n  case adding the half of the number which you just 

multiplied by itself, in the other case subtracting the same 

half, and you will have a "binomial" and "apotome" respectively; 

then subtract the cube root of the apotome from the cube root of 

the binomial, and the remainder from this is the value of the 

"thing". 

from Girolamo Cardano's Afs Magna, (Numburg, 15451 

Certainly one of the great theorems of mathematics is the quadratic 

formula, but its origins cannot be pinned down to a specific time, place, 

or person. The ancient Babylonians of about 2000 B.C. were apparantly 

aware of an equivalent of the quadratic formula, and the method of 

completing the square on which the formula is based. The case of cubic 

equations is considerably more difficult, and while some special cases of 

cubic equations were solved by the Babylonians and others, including 

Archimedes, the solution of the general cubic was not known until much 

later. In the eleventh century the Persian poet-mathematician Omar Khayyam 

devised a geometric solution of cubic equations, and about 500 years later 

Italian mathematicians were able to get an algebraic solution of both cubic 

and quartic equations. The interested student can find a discussion of 

both these methods in Great Moments in Mathematics (before 1650) by Howard 

Eves. Here, the algebraic solution will be developed. 

The actual solution technique will be applied to cubic equations of the 
3 form x + mx = n, or "depressed cubics" which lack a second degree term. 

As will be seen presently, any cubic can be converted to this form. 

A useful result is the following identity: 
3 

(a-b)3 + 3ab(a-b) = a3 - b . 
The student should prove this by expanding and simplifying the left side. 

If x = a-b, the above identity corresponds to the depressed cubic 
3 3 

x3 + 3abx = a - b , 
which suggests choosing a and b so that 

m = 3ab, and n = a - b 3 



The solution of these two equations for a and b is 

j 7  j- a = (n/2) + (42) + (m/3) and b = 

from which one root, x = a-b, can be found. The cubic now can be factored 

into a linear factor and a quadratic factor, and the other solutions found 

by the quadratic formula. The student should verify the above formulas for 

a and b. 

2 
A general cubic of the form ax3 + bx cx + d = 0 can be "depressed" by 

means of the substitution x = z - b/3a, giving 

Some Examples: 
2 

1. 3x3 - 5x - x - 2 = 0. Here a=3, b=-5, c=-1, and d=-2, so the 

substitution x = z + 5/9 yields 

34 where now m = - - and n = - 
27 

and so (a calculator is handy 
729' 

for the arithmetic) z = 1.44444, to five decimals. Thus x = 2, 
2 

and the equation can be factored as (x-2)(3x + x + l),and the 

other two roots are seen to be complex (but in the 16th century 

complex numbers were poorly understood). 

2. x3 - 63x = 162. This cubic is in depressed form with m = -63 and 

n = 162. The numbers a and b turn out to be 

a = [8l + ~O/T]''~ and b = [-81 + 30/T]1/3. 

This presented problems for the 16th century mathematicians, and 

this situation came to be known as the "irreducible case". 

The irreducible case will occur whenever the three roots of the 

cubic are all real and different from zero. In the given example 

it can be shown that one of the cube roots of 81 + 30/ is 

-3 + 2 G  , and that one of the cube roots of 81 - 30/ is 

-3 - 2/. Thus, a - b = -6, which is indeed a root of the 

given cubic. 



Algebraic and Transcendental Numbers 

Given any distinct algebraic numbers a a 
1' 2 ' " "  

a , the equation 
m 

m 

, . . , a  not all zero. is impossible in algebraic numbers a a 
m 

Probably the first crisis in Mathematics came with the discovery of 

irrational or incommensurable numbers, such as -/"î . The early Greeks, in 

the fifth or sixth century BC, were the first to realize that there are 

points on the number line which do not correspond to any rational number. 

In fact, it is now known that there are "more" irrationals than rationals. 

The concept of "more" as applied to infinite sets will be treated in 

another chapter. 

The set of real numbers can also be divided into algebraic and 

transcendental numbers. 

Definition: A number a is algebraic if a satisfies an equation of the 

form 

in which the coefficients a. are rational numbers. 
1 

Notice that all rational numbers are algebraic, as well as numbers like /2 

Definition: A number is transcendental if it is not algebraic. 

Thus, all transcendental numbers are irrational, but it was not known until 

1844 whether any transcendental numbers actually existed! In that year 

Liouville constructed not only one, but an entire class of nonalgebraic 

real numbers, now known as Liouville numbers. About thirty years later, 

Cantor was able to prove that transcendental numbers exist and have the 

same cardinality as the real numbers (without exhibiting any transcendental 

numbers!). In 1873 C .  Hermite proved that the number e is transcendental, 

and in 1882 F. Lindemann, basing his proof on Hermite's, was able to show 

that v. is also transcendental. These are both great theorems, and the 

proof below of the transcendence of e is based on work of A. Hurwitz, 

published in 1893. 



In order to prove the main result, the following preliminary lemma is 

convenient. 
n 

Lemma: If h(x) = f(x)g(x)/n! where f(x) = x and g(x) is a 

polynomial with integer coefficients, then h Ã  (0) , the j th 

derivative of h evaluated at x=0, is an integer for j=0,1,2, . . .  . 
Also, the integer hj(0) is divisible by (n+1) for all j except 

possibly j=n, and in case g(0)=0 the exception is not necessary. 

Proof: (For those who are wondering what this lemma has to do with 

the transcendence of e, notice that it involves polynomials with integer 

coefficients, the kinds of things associated with algebraic numbers.) By 

calculating the first two or three derivatives of h and using induction it 

can be seen that 

(j -m) (x) 
n! m=O 

h e  ] represents the mth binomial coefficient of order j. Since f(x) = 

n k i x and since g can be expressed as 2. c.x with cO,cl, . . . ,  c integers, it 
1-0 1 k 

follows that 

c. (j-m)! if j - m < k  
f(m) (0) = 

O i f m i t n  
and g (j -m)(~) = n! if m = n 

I 

Noting that k is the degree of g, there are 4 cases: 

(1) j < n : f̂0) = 0 for m = 0,1,. . . ,j ,so h("(0) = 0. 

Clearly, hj(0) is an integer in each case, and is divisible by (n + 1) in 
all except case (2). If g(0) = c = 0 , then the result in case (2) is 

also divisible by (n + 1). The proof of the lemma is complete 

Theorem: e satisfies no relation of the form 

with integer coefficients not all 0. 

Proof: The idea of the proof will be to assume that e satisfy 

such a relation, and arrive at a logical impossibility, or contradiction. 

In this case, the contradiction will be that a certain number is a non-zero 

integer, but also has absolute value less than 1. 



There is no loss  of general i ty  i n  assuming tha t  a i s  nonzero. 

For an odd prime p ( t o  be specified l a t e r )  define the  polynomial 

x ~ - ~ ( x - l ) P ( x - 2 ) ~ .  . . (x-m) P 
h(x) = 

( p - l ) !  
which has degree mp+p-1 and not ice  t ha t  the lemma i s  applicable t o  not only 

h (x ) ,  but  a lso  t o  h (x+l ) ,  h(x+2), ..., and h(x+m). Also define 

H(x) = h(x) + h'(x) + h"(x) + . . .  + h ( m ~ + ~ - l )  (x) 

and not ice  t ha t  h (mp+p-l) (x) = (mp+p-1) ! /(p-1) ! , a constant. Now 
-X 

(e'%(x))' = e - 5 '  (x) - e ' k x )  = e (H' (x) - H(x)) 

= -e'%(x) 

so t h a t  
i i 

aiJo e-x h(x) dx = -a.J (e^  ~ ( x ) ) '  dx 
l o  

i 
Now multiply by e and sum from i=0 to  m : 

Now, assuming t h a t  e does s a t i s f y  the equation i n  the  theorem, the f i r s t  

term on the  l e f t  i s  0 ,  and using the def ini t ion of H, the  above equation 

becomes : 

- 
Looking f i r s t  a t  the r i g h t  s ide ,  the lemma can be applied t o  h (x) ,  h(x+l) ,  

h(x+2), . . . , and h(x+m) t o  ge t ,  ( fo r  j = 0 , 1 , .  . . ,mp+p-1) h ^ ) ( 0 ) ,  

h ' j ) ( l ) ,  . . . , hcj)(m) a re  a l l  integers and a r e  a l l  d iv i s ib l e  by p except 

possibly h (P'^ (0) . However, 

and i f  p i s  chosen so t h a t  p > m and also p > 1 ao1 then 

1)  h ( ~ ^ ' ( 0 )  i s  not d iv i s ib le  by p ,  and 

2) every term i n  the  double sum above i s  a multiple of p 

except the term - a o h p - I )  (0 ) .  

Therefore the  r i gh t  s ide  of (*) represents a nonzero integer .  

Turning t o  the  l e f t  s ide  now, 
i 

a.eiJo 1 e-x h(x) dx [ aieiJe-x h(x) dx 
i=O 

s[ 
i=O 



m P-1 
m (mm+2) 

5 [ Iail (P-I)! ' 
i-0 

where it is necessary to require p > m+2 for the last inequality. The 
p-l 

(mm+2) 
m+2 

m 
expression above is the p-th tens in the series for e , which 

(D-lt ! .. . 
is a convergent series of constants, and so the p-th term can be made 

arbitrarily small by choosing p large enough. This means that the left 

side of (*) can be made smaller than 1 in absolute value, contradicting 

that the right side is a nonzero integer. This completes the proof. 

Lindemann's theorem, stated at the beginning of this section, replaces the 

integer exponents 0,1, ..., m by algebraic numbers al, . . . ,  a . The 
m 

transcendence of TT then follows from observing that, if ir were algebraic 

then ~ T T  would also be algebraic and the equation 
in 
e + 1 = 0  

--- 7 J L. 5 --..- Z L , .  
WUUJ-U "'3 Â±lllp"Â£>Â£)J-UJ 

7 ,  nuwcv~^", .. .. --- -1-z- c--.. 7 - 
L a is one of hL- LUG % - - -  LÃˆt=oL.-n.ii . '- i  17--- 'LT~ . 

mathematics and is certainly true, so TT must be transcendental. 



The Three Famous Problems of Antiquity 

1 The duplication of the cube. 

2. The trisection of an angle. 

3 .  The quadrature of the circle. 

These are all construction problems, to be done with what has come to be 

known as Euclidean tools, that is, straightedge and compasses under the 

following rules: 

0 With the straightedge a straight line of indefinite length 

may be drawn through any two distinct points. 

0 With the compasses a circle may be drawn with any given 

point as center and passing through any given second 

point. 

To expand on the problems somewhat', the duplication of the cube means to 

construct the edge of a cube having twice the volume of a given cube; the 

trisection of an angle means to divide an arbitrary angle into three equal 

parts; the quadrature of the circle means to construct a square having 

area equal to the area of a given circle. 

The importance of these problems stems from the fact that all three are 

unsolvable with Euclidean tools, and that it took over 2000 years to prove 

this ! Also, these are the problems that seem to attract amatuer 

mathematicians who, not believing the proofs of the impossibility of these 

constructions, (and the proofs are ironclad!) expend much effort on 

"proofs" that one or more of these is indeed possible. Trisecting the 

angle is the favorite. Many of these attempts do produce very good 

approximations, but, as will be seen, cannot be exact. 

Interestingly enough, the results needed to show that the three problems 

are impossible are not geometric, but rather are algebraic in nature. The 

two pertinent theorems are: 

THEOREM A: The magnitude of any length constructible with 

Euclidean tools from a given unit length is an algebraic 

number. 

THEOREM B: From a given unit length it is impossible to 

construct with Euclidean tools a segment the magnitude 

of whose length is a root of a cubic equation having 

rational coefficients but no rational root. 



Notice that while Theorem A says any constructible number is algebraic, 

Theorem B says not all algebraic numbers are constructible. The proofs of 

these theorems will be postponed while the three famous problems are put to 

rest now. 

Du~lication of the cube: Let the edge of the given cube be the unit of 

length, and let x be the edge of the cube having twice the volume of the 

given cube. Then x3 - 2. Since any rational root of this equation must 

have as numerator a factor of 2 and as denominator a factor of 1 the 

equation has no rational roots. Thus, according to Theorem B, x is not 

constructible. 

Trisection of the angle: 

Some angles, such as 90'. can be trisected, but if it can be shown that 

some angle cannot be trisected, then the general trisection problem will 

have been proved impossible. Here it will be shown that a 6 0  angle cannot 

be trisected. Recall the trigonometric identity 
3 9 9 COSO = ~ C O S  (Ã£ - ~cos(,) 

0 e 
and take 9 = 60 and x = cos(-) The identity becomes 3 '  

8x3 - 6x -1 - 0 
and, as above, any rational root must have a factor of -1 as numerator and 

a factor of 8 as denominator. A check of the possibilities again shows 

that, by Theorem B, x is not constructible. It remains to show that the 

trisection of a 6 0  angle is equivalent to constructing a segment of length 
0 cos20Â° In Figure 1 the radius of the circle is 1 and LBOA = 60 . If the 

trisector OC can be constructed, then so can segment OD, where D is the 

foot of the perpendicular from C to OA. But OD - x. 

Figure 1 

23 



The student should prove the following theorem on the rational roots of a 

polynomial, which was used in both of the above proofs. 

THEOREM C: If a polynomial equation 

with integer coefficients a ,  a , .  . . ,a has a reduced n 
rational root b/c, then b is a factor of a and c is a factor n 

The ~uadrature of the circle: In the proof of Theorem A it will be seen - 
that the constructibility of a number a is equivalent to the 

constructibility of /a. Thus, if the radius of the given circle is 1, the 
- 

required square must have side / IT, but w was shown earlier to be 

transcendental, and so cannot be constructed, by Theorem A. 

Proof of Theorem A: Any Euclidean construction consists of some sequence 

of the following steps: 

1. drawing a straight line between two nninta 9 

2 .  drawing a circle with a given center and a given radius, 

3. finding the intersection points of two lines, a line and 

a circle, or two circles. 

Further, every construction problem involves certain given geometric 

elements a, b, c, ... and requires that certain other elements x, y, z ,  . . .  
be found. The conditions of the problem make it possible to set up one or 

more equations whose solutions allow the unknown elements to be expressed 

in terms of the given ones. At this point the student should show that, 

given segments of length a, b, and 1, segments of length a+b, a-b, ab, a/b 

and /a can be constructed. These turn out to be the basic operations. 
Assume that a coordinate system and a unit length are given, and that all 

the given elements in the construction are represented by rational numbers. 

Since the sum, difference, product, and quotient (dividing by 0 is of 

course excluded) of two rational numbers is another rational number, the 

rational numbers form a closed & under the 4 arithmetic operations. Any 

set which is closed with respect to these 4 fundamental operations is 

called a and the field of rational numbers will be denoted by Qo. If 

two points P (x y ) and P (x y ) are given, then the equation of the line 1 1' 1 2 2' 2 



through them is 

Clearly, a, b, and c are rational. The equation of a circle with radius r 

and center (h,k) is 
2 2 2 

~ ~ + ~ ~ - 2 h x - 2 k y + h  + k  - r  - 0  

or 

x 2 + y 2 + d x + e y + f = ~  

where d, e, and f are rational. Now, finding the intersection of two lines 

involves rational operations on the coefficients of the variables, and 

finding the intersection of two circles or of a circle and a line involves 

the extraction of square roots in addition to the 4 rational operations. 

Thus, a proposed Euclidean construction is possible if and only the 

numbers which define the desired elements can be derived from the given 

elements by a finite number of rational operations and extractions of 

square roots. 

If a unit length is given, then all rational numbers can be constructed, 

and if k is a rational number, /k and a + b/k can be constructed if a 
I and b are in Q (rationals). If /k is not in Qo then all numbers of the 

0 
form a + b/k forms a new field Q (The student should prove this.) In 

1' 
fact, Ql contains Q as a subfield. Next, all numbers of the form a + 0 

b /k where a and b are in Q and k is also in Q but /q is not in Ql 1 1  1 1 1 1' 
also form a field, Q which contains Q as a subfield. In this way a 

2' 1 
sequence of fields Qo, Q,,..., Q can be formed with the following 

properties: 

(1) Q is the rationals 

(ii) Qk is an extension of Q 
k-1' 

k = 1,2, . . . ,  n 
(iii) Every number in Q , k = 0,1, ..., n is constructible k 
(iv) For every number constructible in a finite number of 

steps, there exists an integer N such that the 

constructed number is in one of the fields Q O.. .. .QN. 
I Since the members of the field Qk are all roots of polynomials having 

degree 2k and rational coefficients, it follows that all constructible 

numbers are algebraic. This proves Theorem A. 



Proof of Theorem B: Consider the general cubic with rational coefficients -- 
3 2 
x +px + q x + r = O  

and having no rational roots. Assume that one of the roots is 

constructible, say x Then x is in 0 for some integer n > 0, where Qn 
1' 1 

is one of the fields constructed in the proof of Theorem A. Also assume 

that none of the roots belong to Q ,k < n. Thus, 
k 

x l = a + b / k  

where a, b ,  and k belong to Q Substituting x = a + b/k into the 
n-1' 1 

cubic yields 
2 2 

s = a3 + 3ab k + pa2 +pb k + qa + r = 0 

and 
2 3 

t =  3 a b + b k + 2 p a b + q b a 0 .  

(The student should fill in the details.) Now if a - b/k is 

substituted into the left side of the cubic, the left side becomes s - t/k 

and is zero. This means that x = a - b/k is also a root of the cubic. 
2 

To get the third root, write the cubic as 

(x - x )(x - x )(x - x ) = 0 
1 2 3 

and expand. The coefficient of x2 turns out to be -(x,+ x,,+ x2)which is 
L L J  

equal to p. This and the fact that x + x = 2a gives 1 2  
x = -2a - p 

which means that x belongs to Q 3 
a contradiction. This completes 

n-1 ' 
the proof of Theorem B. 



Newton's Binomial Theorem and Some Consequences 

'actions are reduced to infinite series by division; and 

radical quantities by extraction of the roots, by carrying out 

those operations in the symbols just as they are commonly carried 

out in decimal numbers. These are the foundations of these 

reductions: but extractions of roots are much shortened by this 

theorem. 

m m - n m - 2n m - 3n (P + PQ)~I"= P""~+ - AQ + - BQ + 3n 
CQ + - 

2n 4n DQ + etc. n 
where P + PQ signifies the quantity whose root or even m y  

power, or the root of a power, is to be found; P signifies the 

f i t  term of that quantity, Q the remaining terms divided by the 

first, and m/n the numerical index of the power of P + PQ, 
whether that power is integral or (so to speak) fractional, 

whether positive or negative." From the letter of June 13, 1676, 

written by Isaac Newton to Henry Oldenburg (secretary of the 

Royal Society). 

The patterns of the coefficients obtained when expanding a binomial raised 
n 

to an integer power, such as (a + b) , were known to the Arabs of the 13th 

century, and the array 

. . . . . . . . . . .  
called Pascal's triangle was known to mathematicians in the 16th century, 

about 100 years before Pascal! In 1665, Newton expressed this binomial 

expansion formally as follows: 

(P + PQ)'Â¡' = pmIn m - n  m m/n2 + pmln< + [ ] - P  Q + n n 

(Do you see what the A, B, C, . . . are in the introduction?), which, after 
cancelling the common factor pmn from both sides, gives 

which is the general form of the Binomial Theorem as it is known today. 

Newton's great insight was not only the formal expansion of this 

expression, but also the conviction that it remained valid for fractional 

and negative exponents, cases in which the expansion takes the form of an 

infinite series. For example, 

2 7 



Newton "checked" this result by cross-multiplying the expression by (l+x)' 

to get 1. Another example done by Newton was 

which he checked by squaring the right side to get 1 + x. 

The power and usefulness of the Binomial Theorem were most apparent 

when Newton used it along with his newly invented Calculus. The next two 

examples, the first involving integration and the second differentiation, 

illustrate the interaction between the Binomial Theorem and Calculus. 

Newton's Approximationof IT 

By definition, w is the ratio of the circumfrence of a circle to its 

diameter. By Newton's time the value of TT was known to 39 decimal places, 

which seems like not much progress, but the work involved required a good 

deal of geometric insight and literally years of work. Newton, armed with 

the Binomial Theorem and Calculus, made the problem much, much simpler. 

1 1 He began with the circle having center (-.0) and radius -. The equation 
2 2 

for the upper semicircle is easily seen to be y - /x. Let B be the 

point (-,0) and draw DB 1 AC. Newton then attacked the area A in two 

different ways. 

Figure 1 
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First. he used the Binomial Theorem and Calculus as follows: 

1 1 2  1 3  5 4 - -r x ( l - - x - - x - - x - -  x - -  7 x 5 - . . .  ) 
2 6 16 128 256 

112 1 312 1 512 1 712 5 912 7 1112 = x  - . x  - - x  - -  x - -  x - -  x - . . .  . 
2 8 16 128 256 

1 

So, A 1 = J i  /= dx 
0 

1 

(xl12- x312- x512- . . . - - 7 x 1112 ) dx = 0.076773207. 
8 256 

Next, using geometry, Newton calculated as follows: 

?r In triangle DBC, with area A notice that cos9 = .5 and so 9 = ; . 
2 ' 

Thus, the length of DB is 1 / , and A = 2 /3 . 
4 2 32 

Further, since the area of the sector ADC is to the area of the full 
v 

circle as 9 is to 2n, the area of sector ADC is - . Thus, 
24 

n A = - - -'- /3 a 76773207 
1 24 32 

and so 

v = 3.141595074 

which is correct to 5 places. Newton carried the binomial expansion 

out to 22 terms, and found v accurate to 16 places in a few hours 

using this technique. 

"Newton's Method" 

Newton devised a quick method, which is still used today, to approximate 

solutions of equations. The technique again uses the binomial theorem and 

calculus. (The student should look up Newton's method in a modern Calculus 

book.) Here, a specific example will be presented before looking at the 

more general case. 

Consider finding the roots of the cubic equation 
3 

f(x) = x - 2x - 5 = 0. 
* * 

Denote the exact solution by x , so that f(x ) = 0, and begin with a 
* 

first guess, or approximation to x , say x = 2. Clearly this is not 

the exact solution since f(2) = -1 rather than 0, but the essence of 

the method is to successively improve this guess. 



* 
Let p = x = 2 represent the error in the guess, so that 

* 3 2 
0 = f(x ) = f(2+p) = p + 6p + lop -1. 

* 
Newton then reasoned that if 2 is a good approximation to x , then p 

will be small, and the terms of degree 2 and higher in p can be 

neglected, giving 

0 = lop - 1 or p as 0.1. 
* 

Since x = 2 + p, the next approximation should be x = 2.1, and the 

process can be repeated. Note that f (2.1) = 0.061, which is getting 
* 

closer to 0. Now let q = x - 2.1, and get, as before, 
0 = q3 + 6.3q2 + 11.23q + 0.061 

which gives, upon discarding all but the linear and constant terms, 

q as -0.0054. 

Thus the revised approximation to the solution is * 
x as 2.0946. 

One more application of this procedure gives * 
x a 2.095447375 

which is correct to 9 decimal places. (The student should compare 

this with the method of section 4.) 

Newton's method can be applied to the problem of finding the roots of any 

differentiable function, not just polynomials. The next part gives a 

general derivation for a general polynomial, and the student (and his/her 

calculus book) can supply the proof for a general function. 

Consider the equation 
2 n 

0 = f(x) = a +  a x +  a x  + . . .  + a x .  
* 0 1 2 * "  

Again, let x be the exact solution, so that f(x ) = 0, and denote the * 
approximation by x, with p = x - x also as before. Then 

* 2 
0 = f(x ) = a +  a (x+p) + a(x+p) + . . .+ a ( x + ~ ) ~  

0 1 n 
2 2 

= a +  a(x+p) + a(x + 2px + p ) + . . . + 
n(n-1) n-2 2 

a (xn+ n x n p  + 
n 

x p + . . . + nxpn+ pn) 
by the binomial theorem. Now collect terms according to powers of p. 

2 0 = (ao+ a x  + a x + . . . + a xn) + p(a + 2a x + . . . + na x n )  + . . . 
2 n 1 2 n 

2 
= f(x) + pf'(x) + terms involving p or higher. 

So, if the terms of degree two and higher are dropped, an 



The value of p can be regarded as a correction term for the guess x, 

so that the next approximation would be 
f (x) x + p = x - -  f' (x) ' 

This is the modern form of Newton's method. 

Newton's own comment on this was : "I do not know whether this method of 

resolving equations is widely known or not, but certainly in comparison 

with others is both simple and suited to practice. Its proof is evident 

from the mode of operation itself, and in consequence is easily recalled to 

mind when needed." 



The Fundamental Theorem of Calculus 

I shall now show that the general problem of quadrature= can he 
1 

reduced to the finding of a line that has a given law of tangency 

(declivitas1, that is. for which the sides of the characteristic 

triangle have a given mutual relation. 

~ottfried Wilhelm Leibniz, Acta Erudi ~o~LzIU (1693). 385-392. 

There are two forms of the Fundamental Theorem of Calculus usually given in 

today's textbooks. Briefly, they are as follows : 

d = 
0 Ã‘,Ã f(x) dx=f(x), and 

a 

0 If the derivative of F(x) is f (x) , then [ f (x) dx - F(b) - F(a) . 
a - 

Either form asserts that the processes of differentiation and integration 

are inverse operations (under certain hypotheses, which are not 

restrictive), that is, each "undoesn the other. Mathematicians before 

Newton and Leibniz were aware of this inverse relationship, and the first 

proof is generally attributed to Isaac Barrow, who gave a geometric proof 

of the following theorem in 1669 in his Lectiones opticae et geometricae. 
~. 

Theorem : Let ZN be~any curve of continually increasing ordinate and (to ~' 
~ ~ 

render the figure less cluttered) lying below the axis VM (see figure 1) 

and let R be a given line segment. Let VL be a curve such that if an 

arbitrary . . ordinate cuts ZN, VM, and VL in F, E, D, respectively, the 

rectangle of dimensions ED and R has an area equal to that of VEFZ. 

Finally,let T on VM be such that FE : ED - R : TE. Then TD is the tangent 

Figure 1 
" 

32 



Barrow's proof was purely geometric, and can be found in Struik. Assuming 

the theorem to be true, take VM to be the x-axis with origin at V. Then 

set FE = f(x) and ED = y. Taking R as a unit segment, the theorem says 

that 

y = (ED)(R) = area VEFZ = 

and 
dy - = ED FE 
dx slope of curve VL at D = - = - = f(x) TE R 

It now follows that 

which is, of course, the fundamental theorem of calculus. 

Barrow, who, by the way, was one of Newton's professors at Cambridge, was 

not able to make very much use of the above theorem, mostly due to his 

relatively cumbersome geometric approach. Newton and Leibniz, however, 

took an algebraic approach, and were able to use the theorem to obtain 

formal rules for integration from corresponding formal rules for 

differentiation, a point of view still used today. The proof that follows, 

while given in modern notation, was given, essentially, by both Newton and 

Leibniz in the late 1600s. 

Let f(x) be a continuous, nonnegative function for all values of x in 

the interval a < x < b, and consider the definite integral 

By the definition of the definite integral, this can be interpreted as 

the area bounded by the curve y = f(x), the x-axis, and the vertical 

lines at x=a and x=b. See Figure 2. 

Now consider the area above, but with the vertical line at x=b 

replaced by a vertical line at a general x from the interval a<x<b, 

and call this area, which clearly depends on x, A(x). Note also that 

A(a) = 0, a fact which will be used later. The heart of the proof 

will be to use the definition of the derivative to find the derivative 

of A(x). Thus, let x be increased by an amount Ax, and denote the 

corresponding increase in A(x) by AA. The area AA (see Figure 2 

again) has a value that is between the values of the areas of two 

other rectangles, namely the rectangles having base Ax and heights 



Figure 2 

yminand ymu , where y and y are the minimum and maximum values 
min max 

of f(x) in the x-interval from x to x+Ax. Thus 

(Y ) (Ax) 5 AA 5 (y ) (Ax). 
min m a x  

Since f is continuous, it is possible to find a value y between ymin 
and y so that 

max 

AA = ?AX. 

- AA 
As Ax + 0. 7 -> y, and since y = this means 

ox 

AA Aim - =  y = f(x). 
x+o Ax 

I 
The derivative of the function A(x) is therefore the original 

integrand f(x). 

Functions having the same derivative can differ by a constant, 

however, so if F(x) is a function whose derivative is also f(x), then 

A(x) = F(x) + C. 
To evaluate C, recall that A(a) = 0, so that 0 = F(a) + C or C =-F(a). 
Thus, 

A(x) = F(x) - F(a), 
and the original integral is simplyA(b) = F(b) - F(a), or 

bf(x) dx = F(b) - F(a), 
a 

where F(x) is any function having f(x) as its derivative. 

Calculus, with integration simplified by the fundamental theorem, has had 

such a great impact, not only on the development of mathematics, but on the 

progress of civilization, that it has become a necessary component of 



technical education today, and is beneficial in many nontechnical fields as 

well. 

Leibniz said of Newton, "Taking mathematics from the beginning of the world 

to the time when Newton lived, what he did was much the better half.", and 

inscribed on Newton's tomb are the words, "Mortals, congratulate yourselves 

that so great a man has lived for the honor of the human race.". However, 

Newton said of himself that, "If I have seen farther than others, it is 

because I have stood upon the shoulders of giants.". 



Prime Numbers 

The Prime Number Theorem : The number of primes not exceeding x 

x 
is asymptotic to - . Conjectured by C. F. Gauss in 1791, 

l o g  x 

(when he was 15). proved independently by J. Eadamard and C. J. de 

la Vallee Poussin in 1896. 

The Prime Number Theorem has been called the most amazing result yet found 

about the prime numbers, and is a truly remarkable result which, in 

addition to its own merits, is notable because of its relation to one of 

the famous still-unsolved problems in mathematics, the Riemann Hypothesis. 

The interested student who knows some complex analysis can learn more in 

advcanced books such as Edwards. There are many interesting properties 

that prime numbers posess, or appear to posess. One of the attractions of 

the theory of numbers is that it is both very elementary and very 

difficult; it is elementary in that it deals with simple mathematical 

objects, the integers, but the problems and techniques are difficult. 

However, in spite of being difficult to prove, the theorems of number 

theory are usually easily stated. Some of the unsettled questions about 

primes include: Are there infinitely many primes of the form n2+ I? Is 
2 there always a prime between n and (n+l)'? Are there infinitely many 

zn Fermat primes, that is, primes of the form 2 + I? 

One of the first properties of prime numbers which has been proved is that 

there exist infinitely many primes. Euclid gave a proof of this which is 

simple and elegant: 

Suppose there is a largest prime, and that all the primes up to this 

largest prime are known. Then a complete finite listing of the primes 

is possible in ascending order: 

2,3,. . . , p .  
Now consider the integer 

N = (2*3*. . . *p) + 1 

formed by adding 1 to the product of "all" the primes. Obviously, N 

is larger than the largest prime p ,  and N is not divisible by any of 

the primes 2,3 ,...p (because there will always be a remainder of 1). 

N is either a prime itself or it isn't. If N is a prime, then it is a 

prime greater than p , and if N is not a prime, then it must be 
n 

divisible by a prime greater than p .  Both possibilities show the 

existence of a prime greater than the previously assumed largest 



prime, p , and this argument guarantees that the list of primes never " 
ends. 

With the aid of modern compitational power the list of primes has been 

extended quite far, but there seems to be little pattern or regularity in 

the list! However, the apparant chaos is lessened somewhat if, instead of 

looking at individual properties of primes, they are considered "in the 

aggregate". For instance, make (computer aided) a large list of primes, 

and then count to see how many there are up to a given point. The function 

~ ( x )  is defined to be the number of primes less than or equal to x, and is 

a measure of the distribution of the prime numbers. If, for some x, n(x) 

n(x) is found, then a natural thing to do would be to compute the value of - x '  

which is the fraction of the numbers up x that are primes. Actually, it is 

more useful to compute the reciprocal of the above fraction, and some 

results are given below. 

x x n(x) - first difference 
n(x) 

The most significant part of this table is the last column, which is 

consistently about 2.3. Most mathematicians, upon seeing this, would 

eventually think of the number log 10 = 2.30258. . . , and on the basis of 
a 

this evidence the conjecture 
x 

n(x) a; - 
log x 

e 

naturally follows. (The student should try to see how the above formula 

emerges from the table.) Gauss probably did something like this. The more 
x 

formal meaning of "Ãˆ in this setting is that n(x) is asymptotic to - log x 
which means 



This is the famous Prime Number Theorem. The proofs of Hadamard and de la 

Vallee Poussin both involve the Riemann zeta function, and are slightly 

beyond the scope of this course, although anyone who knows some of the 

principles of complex function theory could probably understand them. The 

interested student is referred to Edwards' book. Proofs exist that avoid 

the Riemann zeta function, but the required "buildup" would take too long. 

(See, for instance Hardy and Wright.) 

Since the Riemann zeta function is so much involved with the Prime Number 

Theorem, a short digression on the zeta function will be made here. First 

define the function II(z), which is almost the same as the gamma function, 

Next, let Jw indicate a path of integration which begins at +m, moves to 

the left down the positive real axis, circles the origin once in the 

positive (counterclockwise) direction, and returns up the positive real 

axis to +<Ã  ̂ With these definitions, Riemann's zeta function can be defined 

It can be shown that the function defined by this formula is analytic (has 

a convergent Taylor series) at every point of the complex z-plane except 

for a simple pole at z = 1. If z is restricted to real values greater than 

one, there is a much simpler formula for r(z), viz., 

sometimes known as Dirichlet's function. Riemann himself said that he 

considered it "very likely" that the complex zeros of c(z) all have real 
1 

part equal to :, and the experience of his successors has been the same- it 

is "very likely" that this is true, but no one has been able to prove it. 
1 

This is the famous Riemann Hypothesis, that if r(z) = 0 then Ke(z) = -. 
2 

The Riemann Hypothesis still awaits a proof, but, fortunately, it was not 

needed to prove the Prime Number Theorem. 

x 
Returning to the Prime Number Theorem, the expression 

log 
, while a 

fairly simple approximation to ~(x), is not really very close to ~ ( x )  until 

x becomes extremely large, so there has been interest among mathematicians 

in improving the estimate. Of course, this comes at the price of a more 



complicated approximant. One of the best approximations to x(x) involves 

the Dirichlet form of the zeta function as follows: 

The following table gives an adea of how good an approximation R(x) is 
x 

compared to - log x ' 

x 
x n(x) - 

log x R(x) 

100,000,000 5,761,455 5,428,681 5,761,552 

200,000,000 11,078,937 10,463,629 11,079,090 

300,000,000 16,252,325 15,369,409 16,252,355 

400,000,000 21,336,326 20,194,906 21,336,185 

500,000,000 26,355,867 24,962,408 26,355,517 

600,000,000 31,324,703 29,684,689 31,324,622 

700,000,000 36,252,931 34,370,013 36,252,719 

800,000,000 41,146,179 39,024,157 41,146,248 

900,000,000 46,009,215 43,651,379 46,009,949 

1,000,000,000 50,847,534 48,254,942 50,847,455 

Students should get out their calculators and see how close they can come 

to the numbers in the last two columns. 



Euler and Fermat 

The Little Fermat Theorem: If p is a prime and p is not a factor 

of a, t ~ e n  p is a factor of ap-'-1. Proposed in 1640 by Fermat, 

proved in 1736 by Euler. 

Pierre de Fermat was one of the great mathematicians of the 17th century, 

and, indeed of all time. He had a habit, however, of not furnishing proofs 

of his results. The best known example of this is probably what is now 

called "Fermat's Last Theorem", which states that if n is an integer 

greater than two, there are no positive integer values of x, y, and z such 
n 

that xn+ yn = z . This was written in the margin of one of Format's 

mathematics books, and he says that he had found a "truly marvelous" proof, 

but one "which this margin is too narrow to contain". If Fermat did in 

fact have a proof, it was indeed "truly marvelous", because no general 

proof has yet been found! As of 1979 the theorem had been established for 

all n < 30,000, so some progress has been made. 

Two other conjectures of Fermat were settled by the Swiss mathematician 

Leonhard Euler, who was the most prolific mathematician who ever lived. 
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research during his lifetime averaged about 800 pages a year. One of the 

conjectures of Fermat was proved, and the other was shown to be false. 

Euler's proof of Fermat's Little Theorem: 

Euler arrived at a proof of Fermat's Little Theorem, stated above, by 

means of a sequence of results. 

Theorem A :  If p is prime, and a is any integer, then 

(a + 1)" - (ap + 1) 
is evenly divisible by p. 

u: Using the binomial theorem to expand (a + I)', the above 

expression is equal to 
p-1 + P(P.1) 

Pa ap-2 + . . . + pa 
2! 

The student should show that, since p is a prime, the term in the 

brackets above is an integer. Therefore, p is a factor of 



(a + 1)" - (ap + 1). 
Theorem B: If p is a prime and if a - a is evenly divisible by p, 
then so is (a + 1)' - (a + 1). 

=: By Theorem A and the hypothesis, p divides both a'-a and 

(a + 1)' - (ap + I), and so p must divide the sum of these 

expressions. The student can check that the sum is (a + 1)'- (a + 1). 

The next theorem asserts that the divisibility hypothesis of Theorem B is 

always satisfied. 

Theorem s:  If p is a prime and a is any integer, then p is a factor 

of ap - a. 

=: The proof is by induction. As the student can easily check, 

the theorem is true for a = 1. Knowing this, apply Theorem B with a-1 

to get that p divides (1 + 1)' - (1 + 1) = 2' - 2 to establish 

Theorem C for p-2. But now Theorem B can be applied with a = 2 and 

so p divides (2 + 1)' - (2 + 1) - 3' - 3. In general, assume that 

Theorem C holds for a = n. Then, by Theorem B, p divides 

(n + 1)" - (n + I), 
and Theorem C is thus true for a = n + 1 as well. This shows that p 

divides a - a for any integer a. 

With these preliminaries, Fermat's Little Theorem easily follows. 

Fermat's Little Theorem: If p is prime and p is not a factor of a, 

then p is a factor of ap-- 1. 

Proof: By Theorem C, p is a factor of - 
ap - a = a(ap-l- 1) 

and since p is prime and does not divide a, p must divide a -  1. 

This completes the proof. 

Euler's Refutation of a Conjecture of Fermat: 

Another of Fermat's conjectures, as he stated it in 1640, was "I have 

2" found that numbers of the form 2 + 1 are always prime numbers and 
have long since signified to analysts the truth of this theorem." 

It seems that Fermat had checked this for n = 1, 2, 3, and 4, and for these 



2" values, 2 + 1 is equal to 5, 17, 257, and 65,537, which, as the student 
can verify, are all primes. For n-5, 

5 

2'- 4,294,967,297 

which Euler proved is not prime in 1732, thus disproving Fermat;~ 

conjecture. As will be seen, the smallest prime factor of this number is 

not extremely large, but is large enough that the brute force method of 

factorization is impractical. Euler's technique was both ingenious and 

systematic. His reasoning follows. 

First, Euler considered an integer a and an & prime p not a factor 

of a. He then tried to determine the nature of this prime p divides 

2" a + 1. 

2" 
Case 1: If n=0, then a + 1 = a + 1, which is odd since a was assumed - 
to be even. p also must be odd, so for some integer k, p = 2k + 1. 

2 Case 2: If n=l, then a + 1 = a +  1, and as in Case 1 any prime 
2 dividing a + 1 must be odd. The prime p thus has either the form 

4k + 1 or the form 4k + 3. Suppose p = 4k + 3. Since a is not a 

multiple of p, the Little Format Theorem guarantees that p divides 

a"-1- 1 = a  Mkt3)-1 4kt2 
- 1 - a  - 1 .  

4kt2 Euler then observed that p cannot also divide a + 1, since it would 
then also have to divide the difference 

&kt2 
a + 1 - (a4"'- 1) = 2 

4k+2 
which is impossible for an odd prime. a + 1, however, can 

2 be factored into a product with one factor of a + 1, as the student 
4k+2 

can check. Thus, since p cannot divide a + 1, it cannot divide 
2 2 a + 1 either, and so the possible prime divisors of a + 1 must have 
the form 4k + 1. 

zn 4 2 2 
Case 3: If n-2, then a + 1 = a + 1 = (a ) + 1, and by Case 2 any 
prime divisor must have the form 4k + 1. Looking at this in terms of 

multiples of 8, 4k + 1 can be of the form 8k + 1 or 8k + 5. By 

reasoning similar to Case 2, p = 8k + 5 can be eliminated (the student 
should check this), leaving p = 8k + 1 as the only choice. 

By now, Euler had figured out the pattern (have you?) and determined that 

if a is even and p is an odd prime, then: 



if p divides a + 1, then p = 2k + I ,  
2 

if p divides a +  1, then p = 4k + 1, 
4 

if p divides a +  1, then p = 8k + 1, 
if p divides a'+ 1, then p = 16k + 1, 
if p divides a +  1, then p = 32k + 1, 

32 if p divides a + 1, then p = 64k + 1, 
etc 

In general, this says that 

2" 
if p divides a + 1, then p = (2""')k + 1. 

If a=2, which is certainly even, this is the type of expression Fermat was 

talking about in his conjecture. The first unverified case of Fermat's 

conjecture occurs if a-2 and n=5, so Euler knew that the only possible 
5 

2 32 prime factors of 2 + 1 = 2 + 1 must look like 64k + 1. There are not an 

overwhelming number of primes of this form, and the fifth one Euler tried, 
32 corresponding to k-10, was 641, which does indeed divide 2 + 1. This 

represents a huge improvement over checking all the primes, one at a time, 

by hand, because 641 is the 114th prime and in the 18th century all 

calculations were done by hand! The student should verify that for k=l to 
32 9, 64k + 1 either is not prime or does not divide 2 + 1. 



Fourier Series 

Any function defined in the interval (-7T,7T) can be represented in 

that interval by a series of the f o m  

where the a ' s  and b's are suitable real numbers. From Joseph 

Fourier's presentation to tho French Academy of Sciences, 

December 21, 1807. 

When Joseph Fourier presented his paper on the diffusion of heat to the 

Institut de France (French Academy of Sciences) in 1807, the secretary for 

mathematical and physical sciences was the astronomer Jean Baptists Joseph 

Delambre, who asked Lagrange, Laplace, Lacroix, and Monge (all 

mathematicians) to examine the paper. Three of these four apparantly were 

satisfied with Fourier's work, but the fourth, Lagrange, strongly disagreed 

with several features, especially the series results like the one above, 

and the paper was rejected. However, to encourage Fourier, the Academy 

made the problem of heat propagation the subject of a grand prize to be 

awarded in 1812. Fourier submitted a revised paper in 1811 which won 

4-1,- --:-- L..+ +Â¥1,:. +-- 7.7- n n":+:n^,,",= 4=-"-i- l a n l r  of rigor, and so was not 
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published by the Academy. Not until 1824, when Fourier himself became 

secretary of the Academy, was his 1811 paper published in the Academy's 

Memoires . 

If a function f(x) can be represented as above, and if termwise integration 

from -w to 7~ is allowed, then the values of the coefficients in the series 

are given by the formulas 
7T 7T 

J f(x) sin(nx) dx. a = J f (x) cos (nx) dx and b = - 
n II n II 

-7T -7T 

The student should derive these formulas, which make use of the 

orthogonality of the sine and cosine functions over the interval (-7r,ir). 

Today, these values of a and b are known as the Fourier coefficients of 
n 

the function f(x), and the trigonometric series 

1 
- a + f (a cos nx + b sin nx) 
2 0 n n 

n = 1  

with these coefficients is called the Fourier series for f(x). Of course, 

the big question is : Does the Fourier series for f actually converge to 

the function values of f(x) for x in (-~T,II)? Fourier's claim was that the 



answer was "yes" for f(x), and this was the point on which he was most 

criticized by Lagrange and others. Actually, neither Fourier nor his 

critics were entirely correct, but time has vindicated Fourier more. The 

following theorem was proved by the German mathematician Peter Gustav 

Lejune Dirichlet in 1829. 

Dirichlet's Theorem: If in the closed interval [ - v , ~ ]  f(x) is 

single-valued and bounded, has only a finite number of 

discontinuities, and has only a finite number of maxima and minima, 

then the Fourier series of f(x) converges to f(x) at all points where 

f(x) is continuous and to the average of the right-hand and left-hand 

limits of f(x) at each point where f(x) is discontinuous. 

Notice that this theorem gives sufficient conditions for convergence of the 

Fourier series, but not necessary conditions. More general sufficient 

conditions have been found, but so far no conditions are known to be both 

necessary and sufficient. Dirichlet's conditions are good enough to handle 

many of the periodic functions that arise in physics and engineering, and 

his theorem is often found in textbooks dealing with Fourier series. 

To get his results, Fourier did not use the orthogonality of the 

trigonometric functions, but instead went through an incredible series of 

formal manipulations to arrive at the formulas for the coefficients in his 

series. He began, dealing with the sine series for an arbitrary function, 

by expanding each sine function in a power series (the usual Taylor 

series), and then rearranging the terms to get a power series for his 

"arbitrary" function. But the importance of Fourier's results is due to 

his claim that functions that don't necessarily have Taylor series 

expansions can be represented by Fourier series, so the method is suspect 

already. Undaunted, Fourier proceeded to find the coefficients in this 

(nonexistent) power series usung two more inconsistent assumptions, and 

obtained an answer involving division by a divergent infinite product! At 

this point Fourier had "proved" that all the coefficients in the series 

representing the arbitrary function vanish, which can only lead to the 

conclusion that the function is identically zero, a conclusion Fourier had 

no intention of drawing. Thus, he worked some more on the formula, and 

after some more formal manipulations arrived at the simple result above. 

If this was the end of the matter, Fourier would not be particularly famous 

today, for the same formula had been derived 30 years earlier by Euler, 



although this was unknown to Fourier. (Incidentally, after getting the 

formula for the coefficients, both Euler and Fourier realized that the 

result could have been easily obtained using the orthogonality of the 

sines.) Euler believed that only functions given everywhere by a single 

I analytic expression could be represented by a sine or cosine series, 
I 

however, and did not extend his formula for the coefficients beyond these 

special cases. Fourier, on the other hand, was the first to observe that 

the formula for the coefficients and the orthogonality derivation remain 

valid for any graph which bounds a definite area, and to Fourier this meant 

any graph at all. 

The concept of a "function" is thus one of the ideas of mathematics which 

was greatly influenced by Fourier's work. Before him, there was a 

distinction between "function" and "graph". It was agreed that every 

function had a graph, but that every graph represents a function was not 

accepted by analysts before Fourier. Thus, a graph defined piecewise by 

several different formulas did not represent a function to, say, Euler. 

One of the things Dirichlet did before proving his theorem discussed above 

was to give a clear, explicit definition of a function . Today, when 

mathematicians and engineers construct the Fourier series for generalized 

functions such as the Dirac delta function, divergent series or integrals 

are encountered, but formal manipulations (in the spirit of Fourier!) have 

meaning in the context of new theories that are descendents of Fourier's 

work. 

For more detail about Fourier and his work, the interested student should 
I 

consult the references by Grattan-Guinness and by Langer. Grattan-Guinness 

contains a very slightly edited version of Fourier's work, in French, with 

commentaries in English. Langer gives a survey of Fourier series, and is 

intended to be "readable for students who in mathematics have gone but 

little beyond a good course in the calculus." 



Cantor's Theorem 

The set of all real numbers between 0 and 1 can not be put into a 

one-to-one correspondence with the natural numbers, IN. 

If M  is any set and if YCM) denotes the set whose elements are 

all the subsets of M, then M  can not be put into a one-to-one 

correspondence with the set ? ( M ) .  

Georg Cantor 

Infinity. The concept of an infinite set has been a problem for 

mathematicians, philosophers, and others for centuries. Zeno, Aristotle, 

Galileo, Gauss, Cauchy, and many others have struggled with the idea of 

infinity, and one of the difficulties non-mathematicians today have with 

mathematics is that when a topic involving infinity comes up, it seems to 

them that "common sense" often has flown out the window. The paradoxes of 

Zeno of Elea (which the student should look up) are perhaps the first place 

where some of the difficulties are indicated. Aristotle distinguished 

between the actually infinite and the potentially infinite and was of the 

opinion that only the potentially infinite could exist. The idea of using 

a one-to-one correspondence to "compare" infinite quantities is a very old 

one, but since two line segments of unequal length, or the set of positive 

integers and the set of squares of positive integers can be put into 

ono-to-one correspondences, common sense takes a beating. Galileo knew 

these two examples, and partly because of them he rejected the idea of 

comparing infinities. Gauss cautioned against "the use of an infinite 

quantity as an actual entity", and the fact that a part can be put into 

one-to-one correspondence with the whole (which is characteristic of 

infinite sets) seemed contradictory to Cauchy. 

Toward the end of the nineteenth century, the first truly mathematical 

treatment of infinite sets was done by Georg Cantor, who exploited the old 

idea of one-to-one correspondence to give a firm basis for "counting" 

with infinities. Cantor introduced the following definition: 

Two sets M and N are equivalent (or of the same cardinality) if it is 

possible to put them by some law in such a relation to one another 

that to every element of each one of them corresponds one and only one 

element of the other. 

Let IN = (1,2,3,4,. . . I  be the set of natural, or counting, numbers. It is 

not difficult to show (and the student should do so) that IN is equivalent 



to, among others, the following sets: 

[2,4,6,8,lO, . . .  ) ,  the even natural numbers, 

[...,-3,-2,-1,0,1,2,3,...), the integers, 

(1,4,9,16,25, . . .  ) ,  the squares of the integers. 

Cantor used the set IN as a prototype for his first transfinite cardinal 

number. He said that any set equivalent to IN would be called countably 

infinite and introduced the notation S (aleph-zero) to represent the 
0 

number of objects in a countably infinite set. The word denumerable is 

sometimes used instead of countably infinite today. 

The next question naturally was: Are all infinite sets countably infinite? 

Notice that Cantor's work provides a way to test a set for this property, 

if the one-to-one correspondence can be found, or proved not to exist. A 

likely candidate for uncountability was the set ID of rational numbers, 

since there are infinitely many rationals between any two natural numbers. 

However, it turns out that ID is equivalent to IN ! This can be seen by 

writing the set ID as shown and following the arrows to get the 

correspondence with IN. (Note that any fraction which has already appeared 

is skipped.) 

Thus, Cantor was able to match the sets IN and ID according to his 

definition, and the somewhat surprising but inescapable conclusion is that 

there are as many rational numbers as there are positive integers. Cantor 

also proved that the set of algebraic numbers (recall Chapter 5) is 

countable, and the student should look up this proof. 

There is, however, an infinite set which is not equivalent to IN, and this 



is the subject of Cantor's first great theorem. 

Theorem: The set of all real numbers between 0 and 1 can not be put 

into a one-to-one correspondence with IN ; instead, this set is 

uncountably infinite. 

m: The proof uses a method that has come to be known as Cantor's 
diagonal process and is by reductio ad absurdum. Thus, the first step 

is to assume that there is a one-to-one correspondence between IN and 

(0,l). This means that all the numbers in (0,l) can be listed in a 

sequence, say (r r r ,r ,r , . . . ) .  Also, each r has a unique 
1' 2 '  3 4 i 

representation as a nonterminating decimal. (In order to write 

rational numbers as nonterminating decimals, recall that, for 
1 

instance, - can be written as .49999.. . instead of .5000.. . . )  The 
2 

sequence of r/s can thus be displayed as follows: 
1 

r 0 . a  a a a . . .  
1 11 12 13 14 

r =O.a a a a . . .  
2 21 22 23 24 

r =0.a a a a . . .  
3 31 32 33 34 

etc. 

The symbol a represents the digit in the jth decimal place of r ,  
1.3 L 

and therefore is one of the digits 0,1,2,3,4,5,6,/,8, or 9. 

Cantor next constructed a real number b between 0 and 1 which does not 

appear on the list. One way to define such a b would be as follows: 

Let b = 0 .b b b b b . . . , where bk is chosen to be different from 
1 2 3 4 5  

a the kth digit of r .  This can be done in many ways, such as 
kk ' 

7 if a is 0,1,2,3, or 4, 
kk defining b to be 

k 3 if a is 5,6,7,8, or 9. 

The number b, defined this way, is clearly between 0 and 1, but it 

cannot be one of the r 's because b differs from r in the first 
k 1 

decimal place, from r in the second decimal place, from r in the 
2 3 

third decimal place, and so on. But this is a contradiction since it 

was assumed that all the numbers between 0 and 1 were among the r's. 

Therefore, there cannot be a one-to-one correspondence between IN and 

(0,1), and thus the set of real numbers between 0 and 1 is not 

countably infinite. 

Cantor, in discovering a "bigger" infinity than R defined a new cardinal 
0 '  

number, c, (for continuum) to represent the cardinality of any set which 



could be put into a one-to-one correspondence with (0,l). This led to 

several new results, such as: 

0 R < C ,  

0 IR, the set of all real numbers, has cardinality c, 

0 BxK, the set of all points in the plane, has cardinality c, at 

which point Cantor is reported to have said, "I see it, but I do 

not believe it!". 

Also, as is almost always the case in mathematics, Cantor's result led to 

more questions, the two principal ones being: 

0 Are there any infinities strictly between R and c? 
0 

0 Are there any infinite numbers larger than c? 

Cantor believed that the answer to the first question was "no" , and this 
I 

conjecture has come to be known as the Continuum Hypothesis. The Continuum 

Hypothesis has never been proved, and, as will be seen in the next chapter, 

is in fact unprovable using standard set theory. Cantor did succeed in 

answering the second question, and his result is the great theorem which 

bears his name. 

Cantor's Theorem: If M is any set, and if ?(M) denotes the set whose 

elements are all the subsets of the original set M, then M can not be 

put into a one-to-one correspondence with the set ?(M). 

m: ?(M) is called the power set of M, and is also denoted by the 
M 

notation 2 , since for finite sets, if M has m elements, ?(M) will 

have 2 elements, as the student should verify. The general proof is 

again by contradiction, so assume there is a one-to-one correspondence 

between M and T(M). To help illustrate this, suppose M-(a,b,c,d, ...I 

and the correspondence is given by: 

M - TW) 
a /X (b.c) 

b /X (dl 

c /X (a.b,c,d) 

d Â¥Ã 0 

e <-> M 

f <-> (a.c.f .g) 

etc. 

A new set B is now defined as follows: 

'B is the set that consists of each element of M that is not a member 



of the subset (from ?(M)) to which it is matched." 

To clarify this definition, notice that in the above example a, b, and 

d would be members of B, but c, e, and f would not. 

Of course, B is a subset of M, and so it must correspond to some 

element of M in the one-to-one correspondence which is assumed. For 

definiteness, assume B corresponds to the element y in M. Now either 

y is an element of B or it isn't. If y is in B, then the definition 

of B asserts that y is not an element of the set with which it is 

matched, but that set is B! This is a contradiction. But if y is not 

in B, then y does not belong to the set with which it is matched, and 

so y is, by definition, in B! Again, this is a contradiction. 

The one-to-one correspondence assumed between M and ?(M) thus can 

not exist, and the theorem is proved. 

As a consequence of this theorem, Cantor has opened the door to an infinite 

heirarchy of infinities. If K denotes the real numbers, having cardinality 

c, then Y(K) has cardinality greater than c, ?(?(Hi)) has cardinality 

greater still, and so on. 



Godel's Theorem 

F any consistent formal system F which contains the natural 

number system there are undecidable propositions in F; that is, 

there are propositions S in F such that neither S nor not-S is 

provable in F. 

Godel's Incompleteness Theorem 

For any consistent formal system F which contains the natural 

number system, the consistency of F cannot be proved in F. 

Kurt Godel, 1931 

At the end of the nineteenth century, much work in the foundations of 

mathematics dealt with axiomatics and axiomatization with a goal being to 

make very clear exactly what did and what did not constitute a proof. (See 

especially 2, 6, and 7 on the reading list.) One of the major works was 

Principia Mathematica by Bertrand Russell and Alfred North Whitehead, in 

which they attempted to develop all of mathematics from the notions of 

logic and sets. In an axiomatization of a mathematical system, the 

following general pattern is adhered to: 

0 There are a number of technical terms, such as elements, relations 

among elements, operations performed on elements, etc., which are 

chosen as undefined terms. 

0 There are a number of statements about the undefined terms which 

are chosen as accepted, but unproved, statements. These are the 

axioms. 

0 All other technical terms are defined by means of previously 

introduced terms. 

0 All other statements are logically deduced from previously accepted 

or established statements. These are the theorems. 

Thus, everything is in terms of a formal system, where things are expressed 

using a fixed vocabulary according to a fixed grammar, and theorems are 

obtained from axioms according to fixed rules. Principia Mathematica was 

an attempt to evolve all of mathematics in one system. 

An axiomatic system is consistent if it contains no contradictory 



statements. For example, number theory would be inconsistent if both the 

statement "2 is a prime number" and the statement "2 is a composite number" 

were theorems in number theory. Knowing whether an axiomatic system is or 

is not consistent is thus an important objective, and the question of the 

consistency of a major part of classical mathematics can be reduced to the 

question of the consistency of either the natural number system (with 

Peano's axioms) or set theory (with the Zermelo-Fraenkel axioms). 

Therefore the consistency of the natural numbers (ordinary arithmetic) 

received much study. 

A set of axioms is called complete if it is impossible to add another axiom 

that is independent (not provable from) the given set and also consistent 

with the given set (without the need to introduce new undefined terms). 

Godel's result, now known as Godel's Incompleteness Theorem, says that the 

natural number system cannot be both consistent and complete. Another of 

his results, given above, is that one of the unprovable theorems of the 

natural number system is the consistency of the system! 

One of the consequences of Godel's work is that a distinction must be made 

in mathematics between the two concepts of truth and probability within an 

axiom system. There are true, but unprovable, statements! For example, 

consider the following: 

This sentence is not provable (in axiom system X ) .  

There are two possibilities - the sentence is provable or it isn't. If it 

is provable, then it is true, and what it says is true, but it says that it 

is not provable. This is an obvious contradiction and leads to 

mathematical chaos. Thus, the only alternative is that indeed the sentence 

is not provable, as it is saying. So the sentence must be true! 

As can be seen in the above example, Godel's theorem involves the idea of 

self-reference, an idea which has fascinated many people (not .only 

mathematicians) throughout history. Douglas R .  Hofstadter has done more 

than anyone else to explain Godel's theorem to a general audience, and the 

interested student can find out more in his article in Campbell and Higgins 

(this article can also be found in the March 1982 issue of the Two-Year 

College Mathematics Journal, which contains another article about Godel as 

well.), or, for the truly ambitious, his book Godel, Escher, Bach; An 

Eternal Golden Braid (New York: Basic Books, 1979; Vintage Books, 1980). 



Reading List 

(R) = On reserve in the Library, (H) = Available from Prof. Hall 

1. Historical Topics for the Mathematics Classroom. Introductory material 

in Chapters I1 and IV through VIII, Capsules 9, 14-18, 23, 26, 27, 44-46, 

50-53, 55, 58, 67, 71 77, 82, 84, 85, 91, 98, 104-106, 109, 111. (R),(H) 

2. Mathematical Thought from Ancient to Modern Times, Morris Kline. 

Chapters 8, 13, 17, 18, 26, 43, 51. (R) 

3. Mathematics in Western Culture, Morris Kline. Chapters X, XV, XXV. (R) 

4. A Source Book in Mathematics, 1200-1800, D.J. Struik, Ed. Chapter I, 

sees. 6, 9; Chapter 111, sec 11; Chapter V, pp. 270-291 and 383-386. (R) 

5. Foundations of Euclidean and Non-Euclidean Geometry, Ellery B. Golos 

Part 3, Non-Euclidean Geometry. (R) 

6. The Mathematical Experience, Philip J .  Davis and Reuben Hersh. Chapter 

5, Selected Topics in Mathematics. (R),(H) 

7. Mathematics - People, Problems, Results, Douglas M. Campbell and John 
C. Higgins, Eds. Volume I, pp. 239-288 (see also the appendix), Volume 11, 

pp. 183-208. (R) 

8. Fourier Series, R.E. Langer. (Slaught Memorial Paper, American 

Mathematical Monthly, 1947) (R) , (H) 

0 Each student must read two (2) of the above eight items and write a 

paper (2 to 4 pages, typed, doublespaced) on each one read. 

0 The first paper is due October 9. 

0 The second paper is due December 4. 

0 The papers should contain a summary of what was read, together with 

the student's reactions, criticisms, impressions, etc. 



Bibliography 

(R) = On reserve in the Library, (H) = Available from Prof. Hall 

Archibald, Raymond Clare: Outline of the History of Mathematics, Slaught 

Memorial Paper, American Mathematical Monthly, Supplement to Vol. 56, pp. 

1-114 (1949).(R),(H) 

Ayoub, Raymond: An Introduction to the Analytic Theory of Numbers 

Providence: American Mathematical Society 1963.(R) 

Bell, Eric Temple: Men of Mathematics. New York: Simon and Schuster 1937. 

(R) 

Bold, Benjamin: Famous Problems of Mathematics, A History of Constructions 

with Straight Edge and Compasses. New York: Van Nostrand Reinhold Company 

1969. (R) 

Bollobt~s, Bela, Ed.: Littlewood's miscellany. Cambridge: Cambridge 

University Press 1986. (H) 

Boyer, Carl B. : A History of Mathematics. New York: John Wiley and Sons, 
- inc. L Y O Q .  (Rj,(nj 

Campbell, Douglas M. and Higgins, John C., Eds.: Mathematics, People 

Problems, Results (3 Vols). Belmont: Wadsworth International 1984. (R) 

Cardano, Girolamo: The Great Art, (translated and edited by T. Richard 

Witmer). Cambridge: The M.I.T. Press 1968. (R) 

Davis, Philip J. and Hersh, Reuben: The Mathematical Experience. Boston: 

Birkhiiuser Boston 1981. (R),(H) 

Dickson, Leonard E.: First Course in the Theory of Equations. New York: 

John Wiley and Sons, Inc. 1922. (R) 

Dunham, William: The Great Theorems of Mathematics - Mathematics 

Supplement. Hanover: Department of Mathematics, Hanover College 1983. (H) 

Edwards, H.M.: Riemann's Zeta Function. New York: Academic Press 1974. (R) 

Eves, Howard W.: In Mathematical Circles (2 Vols.). Boston: Prindle, Weber 

& Schmidt, Inc. 1969. (R) 



Eves, Howard W.: Mathematical Circles Revisited. Boston: Prindle, Weber and 

Schmidt, Inc. 1971. (R) 

Eves, Howard W.: Mathematical Circles Adieu. Boston: Prindle, Weber and 

Schmidt, Inc. 1977. (R) 

Eves, Howard W.: A Survey of Geometry, Vol. 1. Boston: Allyn and Bacon 

1963. (R) (Unfortunately, Vol. 2 is not in the UMR Library (yet).) 

Eves, Howard W.: An Introduction to the History of Mathematics, 3rd ed. New 

York: Holt, Rinehart and Winston 1969. (R) 

Eves, Howard W. : Great Moments in Mathematics (Before 1650). The 

Mathematical Association of America 1980. (R) 

Eves, Howard W. : Great Moments in Mathematics (after 1650). The 

Mathematical Association of America 1981. (R) 

Eves, Howard and Newsom, Carroll V.: An introduction to the Foundations and 

Fundamental Concepts of Mathematics. New York: Holt, Rinehart and Winston 

1961. (R) 

Golos, Ellery B.: Foundations of Euclidean and Non-Euclidean Geometry. New 

York: Holt, Rinehart and Winston 1968. (R) 

Grattan-Guinness, I.: Joseph Fourier 1768-1830. Cambridge: The M.I.T. Press 

1972. (R) 

Greenberg, Marvin Jay: Euclidean and Non-Euclidean Geometries, Development 

and History. San Francisco: W.H. Freeman and Company 1980. (R) 

Hardy, G.H. and Wright, E.M.: An Introduction to the Theory of Numbers. 

Oxford: Oxford University Press 1979. (R) 

Heath, T.L., Ed.: The Works of Archimedes. New York: Dover 1912. (R) 

Herivel, John: Joseph Fourier, the Man and the Physicist. Oxford: Clarendon 

Press 1975. (R) 

Hobson, E.W. et al.: Squaring the Circle and Other Monographs. Chelsea 

Publishing Co. (R) 



Kline, Morris: Mathematics in Western Culture. New York: Oxford University 

Press 1953. (R) 

Kline Morris: Mathematical Thought from Ancient to Modem Times. New York: 

Oxford University Press 1972. (R) 

Langer, R.E.: Fourier's Series, Slaught Memorial Paper, The American 

Mathematical Monthly, Supplement to Vol. 54, pp. 1-86 (1947). (R),(H) 

Meschkowski, Herbert: Ways of Thought of Great Mathematicians (translated 

by John Dyer-Bennet). San Francisco: Holden-Day, Inc. 1964. (R) 

National Council of Teachers of Mathematics: Historical Topics for the 

Mathematics Classroom, Thirty-first Yearbook. Washington: National Council 

of Teachers of Mathematics 1969. (R),(H) 

Nagel, Ernest and Newman, James R. : Goedel's Proof. New York: New York 

University Press 1964. (R) 

Newman, James R. : The World of Mathematics (,U Vols.) . New York: Simon and 
Schuster 1966. (R),(H) 

Niven, Ivan: Numbers: Rational and Irrational. Washington: The Mathematical 

Association of America 1961. (R) 

Niven, Ivan: Irrational Numbers. The Mathematical Assosiation of America 

1963. (R) 

Smith, David Eugene: A Source Book in Mathematics. New York: McGraw-Hill 

Book Company, Inc. 1929. (R) 

Struik, D.J.: A Source Book in Mathematics, 1200-1800. Cambridge: Harvard 

University Press 1969. (R) 


